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Negative data help researchers to further refine the directions to
identify the pathogenesis of myopia

U
ncorrected or undercorrected
refractive error is the leading
cause of preventable vision impair-

ment in the world today, with an
estimated 75 million cases of low vision
due to refractive problems.1 Because
refractive error is a major cause of
avoidable blindness, the World Health
Organization has named refraction as
one of the five priorities for Vision
2020—the Right to Sight.2 Not all
blindness associated with refractive
error is avoidable as high myopia can
lead to choroidal atrophy and subse-
quent myopic retinal degneration.3

People with myopia are more likely
than people with hypermetropia to have
undercorrected refractive errors.4

Although debate continues about the
relative contribution of genetics and
environment in the development of
myopia, there is general consensus that
myopia has become more common3 and
indeed meets the definition of an epi-
demic: ‘‘the occurrence in a community
or region of … health-related events
clearly in excess of normal expectancy.’’5

Some therapeutic interventions for
myopia have been tested, but have been
largely unsuccessful.3 A better under-
standing of the causal mechanisms in
the development of myopia is necessary
to identify strategies for primary pre-
vention.

In this issue of the BJO (p 5), Lee and
colleagues question the postulated role
of intraocular pressure (IOP) in the
pathogenesis of myopia, based on their
results from a cohort study of children

in Singapore. Given conflicting data in
the medical literature, how does a busy
ophthalmologist respond to questions
related to these research results from
patients and what is the public health
significance of these data?

Causal criteria can assist scientists
and clinicians in the evaluation of
epidemiological associations for non-
communicable diseases.6 Although not
perfect, these causal criteria are useful
for considering the importance and
clinical relevance of findings from a
single study in the context of previous
research. The causal criteria include: (1)
strength of association, (2) consistency
of findings, (3) specificity, (4) tempor-
ality, (5) plausibility, (6) biological
gradient (dose response), (7) coherence,
(8) experimental evidence, and (9)
analogy. One issue that makes it diffi-
cult to accurately synthesise research
findings is publication bias, the ten-
dency for negative study results not to
be published.

The epidemiological criteria for caus-
ality can be used to consider Lee et al’s
research findings and potential implica-
tions for education of patients with
dissemination of these research results
via the internet and/or media releases.
Earlier studies have yielded conflicting
data, and none has been able to
adequately address the issue of tempor-
ality. Strengths of the current study
include the standardised examination
procedures, high response rate, and
control of the major risk factor for
myopia (genetics) by selection of an

ethnically homogeneous population.
The data displayed graphically in the
figures show quite convincingly that not
only is there no statistically significant
relation between IOP and refraction or
axial length, but also there is no
suggestion of a non-significant trend
or dose-response relation. These data tip
the balance of consistency towards
acceptance of the null hypothesis, at
least for Chinese children. A meta-
analysis may be in order to confirm this
suggestion by statistically combining
the results from all previous studies
and would have been a useful addition
to the current paper.

In summary, within the context of the
causal criteria, the data from Lee et al do
not support the use of ocular hypoten-
sives to delay myopia progression in
Chinese children. This same research
group published negative results in 2001
resulting from their evaluation of the
role of night lighting in the development
of myopia in this same group of school-
children.7 We applaud the authors for
reporting their negative data because
negative data help researchers to further
refine the research directions to identify
the pathogenesis of myopia, a very impor-
tant research area given the global epide-
mic of myopia and associated low vision.
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Understanding the molecular genetics
of congenital cataract may have wider
implications for age related cataract
A T Moore
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Treatment to slow down the progression of cataract would have a
significant effect on the demand for cataract surgery

C
ongenital cataract, although
uncommon, accounts for about
10% of childhood blindness.1 The

cataract is usually seen as an isolated
abnormality but may occur in associa-
tion with other ocular developmental or
systemic abnormalities. About 50% of
bilateral cases have a genetic basis.
Congenital cataract is both clinically
and genetically heterogeneous; isolated
congenital cataract is usually inherited
as an autosomal dominant trait
although autosomal recessive and X
linked inheritance are seen less com-
monly.2 Most progress has been made in
identifying the genes causing autosomal
dominant congenital cataract.2 Two
main approaches have been used to
identify the causative mutations. In
large families linkage analysis has been
used to identify the chromosomal locus
followed by screening of positional
candidate genes; most genes have been
identified using this strategy. A second
approach has been to screen DNA from
large panels of patients with inherited
cataract for mutation in the many
candidate genes available.

The a, b, and c-crystallins are stable
water soluble proteins which are highly
expressed in the lens; they account for
about 90% of total lens protein, have a
key role in lens transparency, and thus
represent excellent candidate genes for
inherited cataract.3 a-Crystallin is made
up of two polypeptides aA and aB
encoded by the CRYAA gene on chromo-
some 21q22.3 and CRYAB gene on
11q22–q22.3, respectively. In addition
to its structural role a-crystallin also
functions as a molecular chaperone
within the lens and other tissues.4

Mutations in both CRYAA and CRYAB
have been identified in families with
ADCC2 5 and in one family with a
missense mutation in CRYAB affected
individuals had both cataract and an
associated desmin related myopathy pre-
sumably caused by impaired chaperone
function of the mutant protein.6 A non-
sense mutation in CRYAA has also recently
been reported in a consanguineous

family with autosomal recessive catar-
act.7

The c-crystallin gene cluster on chro-
mosome 2q33–35 encompasses genes cA
to D but only cC (CRYGC) and
cD(CRYGD) are highly expressed in the
human lens. Missense mutations in
both genes have been identified in
families with ADCC exhibiting a range
of different phenotypes. Two different
missense mutations within CRYGD
(R36S and R58H) are associated with a
crystalline-like cataract8 9 and func-
tional studies suggest that this may be
due to reduced solubility and increased
likelihood of crystallisation of the
mutant protein.10 The b-crystallin family
encompasses four acidic (A) and three
basic (B) forms encoded by genes on
chromosomes 2, 17, and 22. Four muta-
tions have been reported in the b-
crystallin genes. Two different splice site
mutations have been reported in the
CRYBA1 gene on chromosome 17q11.2
associated with nuclear and pulverulent
phenotypes11 12 and a CRYBB1 nonsense
mutation has been reported in a family
with pulverulent cataract.13

A missense mutation in CRYBB2
(Q155X) has been identified in three
unrelated families with ADCC14–16; inter-
estingly, the phenotype in each family is
very different despite the identical
mutation indicating that other modifier
genes are likely to influence the cataract
phenotype. Such modifier gene influ-
ences have recently been identified in a
recessive murine cataract and it is likely
that similar gene-gene interactions will
be identified in human cataract.17

At least 15 different mutations in the
crystallin genes have now been impli-
cated in human cataract associated with
a diverse range of phenotypes. It is still
unclear what proportion of inherited
cataract is associated with crystallin
gene mutations as few studies have
involved systematic screening of all
crystallin genes in a large patient popu-
lation. Burdon et al in this issue of BJO
(p 79), however, report the results of
one such study. They have used both

linkage analysis and candidate gene
screening to investigate the molecular
pathology of inherited cataract in 38
families with AD and AR inherited
cataract ascertained in southern
Australia. They confined their investiga-
tion to five crystallin genes previously
implicated in inherited cataract.
Surprisingly perhaps, only two muta-
tions (both of which have been
described previously), a missense muta-
tion (P23T) in CRYGD and a splice site
mutation in CRYBA1/A3, were identified
in the 38 pedigrees. Crystallin gene
mutations at least in this specific popu-
lation are an uncommon cause of in-
herited cataract.

There are a large number of potential
candidate genes for inherited cataract
and to date mutations have been iden-
tified in genes encoding various mem-
bers of the crystallin family, membrane
proteins including lens connexins,18–22

aquaporin 0 (MIP)23 and LIM2,24 the
cytoskeletal protein, beaded filament
structural protein 2 (BFSP2)25 26 and
the transcription factors PITX3,27

HSF4,28 and MAF.29 Very few mutations
have been reported in each gene which
suggests that that none of the genes so
far identified accounts for a significant
proportion of inherited cataract. It
appears that inherited cataract is geneti-
cally very heterogeneous but given the
paucity of studies that have screened all
known cataract genes in a panel of
carefully phenotyped patients it is still
uncertain whether one or more genes
may account for a significant proportion
of cases.

Is it really worth investing in this
expensive genetic research when we
have a very effective treatment for
age related cataract? The answer
must be yes

The identification of the genetic
mutations underlying congenital catar-
act and subsequent functional studies
will improve our understanding of
normal lens development and the
mechanisms of cataractogenesis. This
information, although important, is
unlikely to lead to any major clinical
advance in the prevention of or manage-
ment of congenital cataract as the
cataracts in this young age group are
usually present from birth. The impor-
tance of this type of research is in its
implications for the more common age
related cataract. Sibling and twin stu-
dies suggest that genetic factors play an
important part in the aetiology of age
related cataract.30 31 The genes impli-
cated in monogenic forms of cataract
are good candidate genes for age related
cataract. The pathogenesis of such cat-
aracts is, however, likely to be complex
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with age, genetic background, environ-
mental exposures, and other disease
associated risk factors such as diabetes
all involved. It remains a major chal-
lenge, given these complex interactions,
to identify the genes involved.32

Is it really worth investing in this
expensive genetic research when we
have a very effective treatment for age
related cataract? The answer must be
yes. Cataract remains the commonest
cause of blindness worldwide and
although surgical treatment is asso-
ciated with excellent visual outcomes
the demand for surgery exceeds the
ability of most healthcare systems to
deliver timely treatment. This problem is
likely to worsen as the incidence of
cataract increases as a result of demo-
graphic changes with the elderly mak-
ing up a greater proportion of the
population. Treatment to slow down
the progression of cataract would have
a significant effect on the demand for
cataract surgery but prevention strate-
gies depend upon an understanding of
disease aetiology and need to be tar-
geted at those individuals at greatest
risk. An understanding of the genetic
sequence variants that confer an
increased risk of developing cataract
holds the key to developing a medical
treatment.
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